Three-Dimensional Inversion of Semi-Airborne Transient Electromagnetic Data Based on a Particle Swarm Optimization-Gradient Descent Algorithm

نویسندگان

چکیده

Semi-airborne transient electromagnetics (SATEM) is a geophysical survey tool known for its ability to perform three-dimensional (3D) observations and collect high-density data in large volumes. However, SATEM processing presently restricted 3D model-driven inversion, which not conducive detailed surveys. This paper presents new model- data-driven inversion algorithm using the particle swarm optimization (PSO) gradient descent (GD) algorithms. PSO used suppress multiplicity of solutions associated with inverse problems, GD employed accelerate convergence process. For PSO-GD algorithm, model-updating equation established cosine probability function introduced as weighting term algorithms ensure smooth transition between two iterative The α-trimmed filter regularization constraint model. stability reliability are verified through numerical simulations. Finally, applied measurements Qinshui coal mine Jincheng, Shanxi Province, China.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Joint inversion of ReMi dispersion curves and refraction travel times using particle swarm optimization algorithm

Shear-wave velocity ( ) is an important parameter used for site characterization in geotechnical engineering. However, dispersion curve inversion is challenging for most inversion methods due to its high non-linearity and mix-determined trait. In order to overcome these problems, in this study, a joint inversion strategy is proposed based on the particle swarm optimization (PSO) algorithm. The ...

متن کامل

A novel particle swarm optimization algorithm based on particle migration

Inspired by the migratory behavior in the nature, a novel particle swarm optimization algorithm based on particle migration (MPSO) is proposed in this work. In this new algorithm, the population is randomly partitioned into several sub-swarms, each of which is made to evolve based on particle swarm optimization with time varying inertia weight and acceleration coefficients (LPSO-TVAC). At perio...

متن کامل

Improvement of Biomass Estimation in Forest Areas based on Polarimetric Parameters Optimization of SETHI airborne Data using Particle Swarm Optimization Method

Estimation of forest biomass has received much attention in recent decades. Airborne and spaceborne (SAR) have a great potential to quantify biomass and structural diversity because of its penetration capability. Polarizations are important elements in SAR systems due to sensitivity of them to backscattering mechanisms and can be useful to estimate biomass. Full Polarimetric Synthetic Aperture ...

متن کامل

A Hybrid Particle Swarm - Gradient Algorithm for Global Structural Optimization

The particle swarm optimization (PSO) method is an instance of a successful application of the philosophy of bounded rationality and decentralized decision making for solving global optimization problems. A number of advantages with respect to other evolutionary algorithms are attributed to PSO making it a prospective candidate for optimum structural design. The PSO-based algorithm is robust an...

متن کامل

A Particle Swarm Optimization Algorithm for Mixed-Variable Nonlinear Problems

Many engineering design problems involve a combination of both continuous anddiscrete variables. However, the number of studies scarcely exceeds a few on mixed-variableproblems. In this research Particle Swarm Optimization (PSO) algorithm is employed to solve mixedvariablenonlinear problems. PSO is an efficient method of dealing with nonlinear and non-convexoptimization problems. In this paper,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied sciences

سال: 2022

ISSN: ['2076-3417']

DOI: https://doi.org/10.3390/app12063042